Adaptive Multiscale Schemes for Conservation Laws (Lecture Notes in Computational Science and Engineering Vol.27) (2003. XIV, 181 p.)

個数:

Adaptive Multiscale Schemes for Conservation Laws (Lecture Notes in Computational Science and Engineering Vol.27) (2003. XIV, 181 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 181 p.
  • 商品コード 9783540443254

Full Description

During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construc­ tion of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation indus­ try. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expen­ sive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available re­ sources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inher­ ent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids.

Contents

1 Model Problem and Its Discretization.- 1.1 Conservation Laws.- 1.2 Finite Volume Methods.- 2 Multiscale Setting.- 2.1 Hierarchy of Meshes.- 2.2 Motivation.- 2.3 Box Wavelet.- 2.4 Change of Stable Completion.- 2.5 Box Wavelet with Higher Vanishing Moments.- 2.6 Multiscale Transformation.- 3 Locally Refined Spaces.- 3.1 Adaptive Grid and Significant Details.- 3.2 Grading.- 3.3 Local Multiscale Transformation.- 3.4 Grading Parameter.- 3.5 Locally Uniform Grids.- 3.6 Algorithms: Encoding, Thresholding, Grading, Decoding.- 3.7 Conservation Property.- 3.8 Application to Curvilinear Grids.- 4 Adaptive Finite Volume Scheme.- 4.1 Construction.- 4.2 A gorithms: Initial data, Prediction, Fluxes and Evolution.- 5 Error Analysis.- 5.1 Perturbation Error.- 5.2 Stability of Approximation.- 5.3 Reliability of Prediction.- 6 Data Structures and Memory Management.- 6.1 Algorithmic Requirements and Design Criteria.- 6.2 Hashing.- 6.3 Data Structures.- 7 Numerical Experiments.- 7.1 Parameter Studies.- 7.2 Real World Application.- A Plots of Numerical Experiments.- B The Context of Biorthogonal Wavelets.- B.1 General Setting.- B.1.1 Multiscale Basis.- B.1.2 Stable Completion.- B.1.3 Multiscale Transformation.- B.2 Biorthogonal Wavelets of the Box Function.- B.2.1 Haar Wavelets.- B.2.2 Biorthogonal Wavelets on the Real Line.- References.- List of Figures.- List of Tables.- Notation.