Numerical Simulation of Reactive Flow in Hot Aquifers, w. CD-ROM : SHEMAT and Processing SHEMAT (2003. IX, 202 p. w. 202 figs. (139 col.).)

個数:

Numerical Simulation of Reactive Flow in Hot Aquifers, w. CD-ROM : SHEMAT and Processing SHEMAT (2003. IX, 202 p. w. 202 figs. (139 col.).)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 332 p.
  • 商品コード 9783540438687

Full Description

Christoph Clauser and Jom Bartels SHE MAT (Simulator for HEat and MAss Transport) is an easy-to-use, general- purpose reactive transport simulation code for a wide variety of thermal and hy- drogeological problems in two and three dimensions. Specifically, SHEMAT solves coupled problems involving fluid flow, heat transfer, species transport, and chemical water-rock interaction in fluid-saturated porous media. It can handle a wide range of time scales. Therefore, it is useful to address both technical and geo- logical processes. In particular, it offers special and attractive features for model- ing steady-state and transient processes in hydro-geothermal reservoirs. This makes it well suited to predict the long-term behavior of heat mining installations in hot aquifers with highly saline brines. SHEMA T in its present form evolved from a fully coupled flow and heat transport model (Clauser 1988) which had been developed from the isothermal USGS 3-D groundwater model of Trescott and Larson (Trescott 1975; Trescott and Larson 1977).
Transport of dissolved species, geochemical reactions between the solid and fluid phases, extended cou- pling between the individual processes (most notably between porosity and per- meability), and a convenient user interface (developed from Processing Modflow (Chiang and Kinzelbach 2001)) were added during several research projects funded by the German Science Foundation (DFG) under grant CL 12117 and the German Federal Ministries for Education, Science, Research, and Technology (BMBF) under grant 032 69 95A-D and for Economics and Technology (BMWi) under grant 0327095 (Bartels et al. 2002, Kuhn et al. 2002a).

Contents

1 Introduction.- 2 Numerical Simulation of Reactive Flow using SHEMAT.- 2.1 General.- 2.2 Governing Equations.- 2.2.1 General.- 2.2.1 Ground Water Flow.- 2.2.2 Heat Transport.- 2.2.3 Species Transport.- 2.2.4 Physical Properties.- 2.2.5 Chemical Reactions.- 2.3 Numerical Techniques.- 2.3.1 Finite Difference Method.- 2.3.2 Flow Discretization.- 2.3.3 Discretization Schemes for Transport of Heat and Dissolved Species.- 2.3.4 Equation Solver.- 2.3.5 Time Step Control.- 2.3.6 Process Coupling.- 2.4 Input / Output.- 2.4.1 General Overview.- 2.4.2 Control File.- 2.4.3 Input File.- 2.4.4 Output File.- 2.4.5 Plot Files.- 2.4.6 Output Grid.- 2.4.7 Monitoring Files.- 2.4.8 Run-time Information.- 2.5 Practical Modeling: Remarks, Explanations and Instructions.- 2.5.1 Problem Size.- 2.5.2 Remarks on Flow Input Parameters.- 2.5.3 Boundary Conditions and Wells.- 2.5.4 Time.- 2.5.5 Convergence.- 2.6 Code Verification.- 2.6.1 Theis Problem.- 2.6.2 Rotating Cone Test.- 2.6.3 Henry's Problem.- 2.6.4 Elder's problem.- 3 Pre- and Post-Processing with "Processing SHEMAT".- 3.1 What is Processing SHEMAT?.- 3.1.1 Professional Graphical Data Input Features.- 3.1.2 Sophisticated Modeling Tools.- 3.2 Modeling Environment.- 3.2.1 Units.- 3.2.2 Toolbar.- 3.2.3 Grid Editor.- 3.2.4 Data Editor.- 3.2.5 Value.- 3.2.6 Options.- 3.3 Menu System.- 3.3.1 File.- 3.3.2 Grid.- 3.3.3 Type.- 3.3.4 Time.- 3.3.5 Flow.- 3.3.6 Heat.- 3.3.7 Transport.- 3.3.8 Reaction.- 3.3.9 Models.- 3.3.10 Tools.- 3.3.11 Help.- 4 Advanced Features.- 4.1 Chemical Equilibrium Speciation for Brines at High Temperatures and Ionic Strength.- 4.1.1 Activity calculations.- 4.1.2 Comparison of the Pitzer and Debye-Hückel Models.- 4.1.3 Chemical Module based on Pitzer's Equations.- 4.1.4 Specification of the Chemical Module.- 4.2 Fractal Relation Between Porosity and Permeability: Theory and Verification.- 4.2.1 Introduction.- 4.2.2 Permeability Derived from Pore Space Models.- 4.2.3 Exponents in the Relationship between Porosity and Permeability Implemented in SHEMAT.- 5 Tutorial for "Processing SHEMAT".- 5.1 Introduction.- 5.1.1 General Information.- 5.1.2 How to use this Tutorial.- 5.1.3 Description of the Example Problem.- 5.2 Creating a Fluid Flow, Heat Transfer, and Solute Transport Model.- 5.2.1 Generating a New Model.- 5.2.2 Defining the Flow Parameters.- 5.2.3 Defining the Heat Parameters.- 5.2.4 Defining the Transport Parameters.- 5.2.5 Running Models and Visualizing Results.- 5.3 Using the Geochemical Reaction Module.- 5.3.1 General Information.- 5.3.2 Refining the Model Grid.- 5.3.3 Defining the Reaction Parameters.- 5.3.4 Running Geochemical Reaction Models and Visualizing Results.- 5.4 Expanding the Model to Three Dimensions.- 5.4.2 Defining the additional Model Parameters.- 5.4.3 Running 3-D Models and Visualizing Results.- 6 Applications.- 6.1 Development of a Preferential Flow Path in an Anhydrite Cemented Sandstone: Numerical Simulation of a Core Flooding Experiment.- 6.1.1 Problem description.- 6.1.2 Laboratory core flooding experiment.- 6.1.3 Concept and conditions for preferential flow path development.- 6.1.4 Model description and assumptions.- 6.1.5 Results and Discussion.- 6.1.6 Conclusion.- 6.2 Modeling Flooding of a Sandstone Core with Reactive Transport and Subsequent Changes in Porosity and Permeability.- 6.2.1 Problem description and experimental data.- 6.2.2 Model Description and Assumptions.- 6.2.4 Results and Discussion.- 6.3 Injection Well with Reaction Kinetics.- 6.3.1 Problem description.- 6.3.2 Model description and assumptions.- 6.3.3 Results and Discussion.- 6.3.4 Conclusion.- 6.4 Magmatic Intrusions in Long Valley Caldera.- 6.4.1 Long Valley Caldera: introduction and regional setting.- 6.4.2 Model description and assumptions.- 6.4.3 Steady-state Conductive Models.- 6.4.4 Transient Models of Heating and Cooling.- 6.4.5 Discussion.- 6.5 Rhine Graben Cross Section.- 6.5.1 Rhine Graben: Introduction and regional setting.- 6.5.2 Temperature Data Across the Upper Rhine Graben.- 6.5.3 Model description and assumptions.- 6.5.4 Results and Discussion.- 6.5.5 Discussion.- 6.6 Thermal Transect of Continental Lithosphere in Canada.- 6.6.1 Problem description.- 6.6.2 Temperature in the lithosphere: a matter of uncertainty.- 6.6.3 Model description.- 6.6.4 Results and discussion.- 6.7 Waiwera Coastal Geothermal System.- 6.7.1 Problem description.- 6.7.2 Observations.- 6.7.3 Model description and assumptions.- 6.7.4 Results and Discussion.- 6.7.5 Conclusions.- References.