Optical Solitons in Fibers (Springer Series in Photonics Vol.9) (3rd)

個数:

Optical Solitons in Fibers (Springer Series in Photonics Vol.9) (3rd)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 194 p., 90 figs.
  • 商品コード 9783540436959

基本説明

Deals with the motion of the lightwaves in optical fibers, the evolution of lightwave packet, optical information transfer, all-optical soliton transmission systems, the control of optical solitons...

Full Description

Optical solitons in fibers are a beautiful example of how an abstract mathematical concept has had an impact on new information transmission technologies. The concept of all-optical data transmission with optical soliton systems is now setting the standard for the most advanced transmission systems. The book deals with the motion of light waves in optical fibers, the evolution of light wavepackets, optical information transfer, all-optical soliton transmission systems, the control of optical solitons, polarization effects, dispersion-managed solitons, WDM transmission, soliton lasers, all-optical switching and other applications. This book is a must for all researchers and graduate students active in the field of optical data transmission.

Contents

1. Introduction.- 2. Wave Motion.- 2.1 What is Wave Motion?.- 2.2 Dispersive and Nonlinear Effects of a Wave.- 2.3 Solitary Waves and the Korteweg de Vries Equation.- 2.4 Solution of the Korteweg de Vries Equation.- 3. Lightwave in Fibers.- 3.1 Polarization Effects.- 3.2 Plane Electromagnetic Waves in Dielectric Materials.- 3.3 Kerr Effect and Kerr Coefficient.- 3.4 Dielectric Waveguides.- 4. Information Transfer in Optical Fibers and Evolution of the Lightwave Packet.- 4.1 How Information is Coded in a Lightwave.- 4.2 How Information is Transferred in Optical Fibers.- 4.3 Master Equation for Information Transfer in Optical Fibers: The Nonlinear Schrödinger Equation.- 4.4 Evolution of the Wave Packet Due to the Group Velocity Dispersion.- 4.5 Evolution of the Wave Packet Due to the Nonlinearity.- 4.6 Technical Data of Dispersion and Nonlinearity in a Real Optical Fiber.- 4.7 Nonlinear Schrödinger Equation and a Solitary Wave Solution.- 4.8 Modulational Instability.- 4.9 Induced Modulational Instability.- 4.10 Modulational Instability Described by the Wave Kinetic Equation.- 5. Optical Solitons in Fibers.- 5.1 Soliton Solutions and the Results of Inverse Scattering.- 5.2 Soliton Periods.- 5.3 Conservation Quantities of the Nonlinear Schrödinger Equation.- 5.4 Dark Solitons.- 5.5 Soliton Perturbation Theory.- 5.6 Effect of Fiber Loss.- 5.7 Effect of the Waveguide Property of a Fiber.- 5.8 Condition of Generation of a Soliton in Optical Fibers.- 5.9 First Experiments on Generation of Optical Solitons.- 6. All-Optical Soliton Transmission Systems.- 6.1 Raman Amplification and Reshaping of Optical Solitons-First Concept of All-Optical Transmission Systems.- 6.2 First Experiments of Soliton Reshaping and of Long Distance Transmission by Raman Amplifications.- 6.3 FirstExperiment of Soliton Transmission by Means of an Erbium Doped Fiber Amplifier.- 6.4 Concept of the Guiding Center Soliton.- 6.5 The Gordon-Haus Effect and Soliton Timing Jitter.- 6.6 Interaction Between Two Adjacent Solitons.- 6.7 Interaction Between Two Solitons in Different Wavelength Channels.- 7. Control of Optical Solitons.- 7.1 Frequency-Domain Control.- 7.2 Time-Domain Control.- 7.3 Control by Means of Nonlinear Gain.- 7.4 Numerical Examples of Soliton Transmission Control.- 8. Influence of Higher-Order Terms.- 8.1 Self-Frequency Shift of a Soliton Produced by Induced Raman Scattering.- 8.2 Fission of Solitons Produced by Self-Induced Raman Scattering.- 8.3 Effects of Other Higher-Order Dispersion.- 9. Polarization Effects.- 9.1 Fiber Birefringence and Coupled Nonlinear Schrödinger Equations.- 9.2 Solitons in Fibers with Constant Birefringence.- 9.3 Polarization-Mode Dispersion.- 9.4 Solitons in Fibers with Randomly Varying Birefringence.- 10. Dispersion-Managed Solitons (DMS).- 10.1 Problems in Conventional Soliton Transmission.- 10.2 Dispersion Management with Dispersion-Decreasing Fibers.- 10.3 Dispersion Management with Dispersion Compensation.- 10.4 Quasi Solitons.- 11. Application of Dispersion Managed Solitons for Single-Channel Ultra-High Speed Transmissions.- 11.1 Enhancement of Pulse Energy.- 11.2 Reduction of Gordon-Haus Timing Jitter.- 11.3 Interaction Between Adjacent Pulses.- 11.4 Dense Dispersion Management.- 11.5 Nonstationary RZ Pulse Propagation.- 11.6 Some Recent Experiments.- 12. Application of Dispersion Managed Solitons for WDM Transmission.- 12.1 Frequency Shift Induced by Collisions Between DM Solitons in Different Channels.- 12.2 Temporal Shift Induced by Collisions Between DM Solitons in Different Channels.- 12.3 Doubly PeriodicDispersion Management.- 12.4 Some Recent WDM Experiments Using DM Solitons.- 13. Other Applications of Optical Solitons.- 13.1 Soliton Laser.- 13.2 Pulse Compression.- 13.3 All-Optical Switching.- 13.4 Solitons in Fibers with Gratings.- 13.5 Solitons in Microstructure Optical Fibers.- References.