Vertebrate Myogenesis (Results and Problems in Cell Differentiation Vol.38) (2002. XII, 242 p. w. 31 figs. (some col.) 24 cm)

個数:

Vertebrate Myogenesis (Results and Problems in Cell Differentiation Vol.38) (2002. XII, 242 p. w. 31 figs. (some col.) 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 36 p.
  • 商品コード 9783540431787

基本説明

Incorporates latest findings on control of smooth muscle development.

Full Description

Muscle development of vertebrates has been a paradigm of cell differentiation for many years. Three types of muscle are found in the vertebrate body: skele- tal, heart and smooth muscle, and there has been a gradient of concern about these different muscle types in the sequence they are mentioned here. Skeletal muscle has received much attention because it can be induced to differentiate in vitro and because of the clinical relevance of myopathies. The discovery of the muscle-specific members of the bHLH and MADS families of transcription factors must be regarded as a breakthrough not only in muscle research and have opened new insights into the genetic control of differentiation. Conse- quently, the effects of gene-targeting of the MyoD-related (myfs) and MEF transcription factors soon became objects of investigation. Along with the genetic control of skeletal and heart muscle development, the temporal-spatial appearance of cells fated to become myocytes has been of foremost interest. The source of all skeletal muscle of the trunk is the paraxial mesoderm, which gives rise to metameric entities, the somites.
The somite can be regarded as a turntable of mesodermal cell fates, chondrocytes, fibroblasts, angioblasts of these deriva- and skeletal muscle precursors. The coordinated development tives is tightly controlled by local tissue interactions between embryonic struc- tures such as the neural tube, the notochord, the lateral plate and the ectoderm.

Contents

Development of Visceral Smooth Muscles.- 1 Early Appearance of Smooth Muscles.- 2 Timing of Smooth Muscle Development.- 3 Morphology of Developing Smooth Muscles.- 4 Cytological Differentiation.- 5 Chemical Differentiation.- 6 Growth of Visceral Smooth Muscles.- 7 Cell Division and Increase in Cell Number.- 8 Extracellular Materials and Vascularization.- 9 Origin of Smooth Muscle Precursors.- 10 Influence of Endothelium, Epithelium, Connective Tissue and Nerves on Smooth Muscle Development.- 10.1 Role of Endothelium and Epithelium.- 10.2 Role of Mesenchymal Cells and the Extracellular Matrix.- 10.3 Role of Nerves.- 11 Development of Mechanical Activity.- 12 Related Processes of Development and Growth.- 13 Synopsis.- References.- Mammalian Smooth Muscle Differentiation: Origins, Markers and Transcriptional Control.- 1 Introduction.- 2 Smooth Muscle Cell Ontogeny.- 2.1 Evolutionary Concepts.- 2.2 Embryological Origins of SMC.- 2.3 Models for Studying SMC Differentiation.- 3 Molecular Definitions of Smooth Muscle Cell Lineages.- 3.1 SMC-Restricted Markers.- 3.2 SMC-Restricted Promoter Activity.- 4 Future Perspectives.- References.- The Genetics of Murine Skeletal Muscle Biogenesis.- 1 Introduction.- 2 The Restriction of Cell Fate and Views on Cell Determination.- 3 The Somite Is a Source of Multiple Cell Types.- 4 The Acquisition of Cell Fate in the Somite: Myf5 and Myod Confer Skeletal Muscle Identity.- 5 Subpopulations of Stem Cells Migrate from the Somite to the Limb.- 6 Extrinsic Factors Direct Cell Identity in the Somite.- 7 Manipulations of the Myf5 Locus and Distal Rib Phenotypes: the Complexities of Gene Regulation.- 8 Conclusions.- References.- Somite Patterning: a Few More Pieces of the Puzzle.- 1 Introduction.- 2 Segmental Plate Morphology.- 3 Somite Differentiation.- 3.1 Muscle Formation.- 3.1.1 Epaxial and Hypaxial Muscle Derivatives.- 3.1.2 A Distinct Embryonic Origin for Epaxial and Hypaxial Muscles?.- 3.1.3 Epaxial Muscle Formation.- 3.1.4 Hypaxial Muscle Formation.- 3.1.5 A Second Wave of Proliferative Muscle Progenitors.- 3.2 Dermis Formation.- 4 Tissue and Molecular Regulation of Somite Differentiation.- 4.1 The Notochord and Floor Plate Exert a Ventralizing Activity on the Somite: a Role for Sonic Hedgehog?.- 4.2 Dorsalizing Activity of Wnt Molecules in the Dorsal Ectoderm and Neural Tube.- 4.3 Tissue and Molecular Regulation of Myogenesis: an Instructive or Permissive Process?.- 5 Conclusion.- References.- Transcription Factors in Skeletal Myogenesis of Vertebrates.- 1 Myogenesis.- 2 Determination and Differentiation of Muscle Precursor Cells.- 2.1 MRFs.- 2.1.1 Myf5.- 2.1.2 MyoD.- 2.1.3 Myogenin.- 2.1.4 MRF4.- 2.2 MEF2 Transcription Factors.- 3 Hypaxial Muscle Development.- 3.1 Pax3.- 3.2 Lbx1.- 3.3 Mox2.- 4 Regeneration of Skeletal Muscle.- 4.1 MRFs.- 4.2 Pax?.- 4.3 MNF.- 5 Perspectives.- References.- Hypaxial Muscle Development.- 1 Introduction.- 2 Developmental Anatomy of Trunk Skeletal Muscles in Amniotes.- 3 Markers for Hypaxial Muscle Precursors.- 4 Specification of Hypaxial Muscle Precursors.- 4.1 Cues from the Lateral Mesoderm.- 4.2 Cues from the Surface Ectoderm.- 4.3 Master Regulator Pax3.- 5 Specification of Migratory Muscle Precursors.- 5.1 Somitic Competence.- 5.2 Localized Lateral Signals for the Recruitment of Limb Muscle Precursors.- 5.3 The Role of Scatter Factor/Hepatocyte Growth Factor and cMet in the Delamination of Migratory Muscle Precursors.- 5.4 The Role of Lbx1 in Target Recognition of Limb Muscle Precursors.- 6 Building a Regulatory Network for Hypaxial Muscle Development.- References.- Inhibition of Skeletal Muscle Development: Less Differentiation Gives More Muscle.- 1 Introduction.- 2 Secreted Signalling Molecules.- 2.1 Fibroblast Growth Factor Family.- 2.2 Transforming Growth Factor ? Superfamily.- 3 Extracellular Matrix.- 4 Transcription Factors.- 4.1 Notch.- 4.2 Twist.- 4.3 Id.- 4.4 Msxl.- 5 Summary.- References.- Control of Muscle Size During Embryonic, Fetal, and Adult Life.- 1 Introduction.- 2 Somite Patterning and Specification of Myogenic Cells.- 3 Allocation of Cells to the Dorsal Somite Compartment.- 4 Migration of Muscle Precursor Cells.- 5 Balance Between Proliferation and Differentiation.- 6 Muscle Growth in the Embryonic, Fetal, and Neonatal Periods of Development.- 7 Embryonic and Fetal Muscle Fibers.- 8 Embryonic, Fetal, and Adult Myoblasts.- 9 Number of Embryonic and Fetal Myoblasts and Fiber Formation.- 10 Innervation and Muscle Fiber Number and Size.- 11 Muscle Hypertrophy and Regeneration.- 12 Programmed Cell Death During Muscle Development.- 13 Recruitment of Myogenic Cells from Adult Pluripotent Stem Cells.- References.- Cadherins in Skeletal Muscle Development.- 1 Cadherins.- 1.1 Cadherin Structure and Interactions.- 1.2 Cadherins and Catenins.- 2 Cadherins in Myogenesis.- 2.1 M-Cadherin.- 2.2 N-Cadherin.- 2.3 R-Cadherin.- 3 Summary and Outlook.- References.- Slow Myosins in Muscle Development.- 1 Introduction.- 2 Myosin Heavy Chain Genes.- 3 Slow Myosin Heavy Chain Genes in Avian Skeletal Muscle.- 4 Slow Myosin Heavy Chain Genes in Mammalian Skeletal Muscle.- 5 Slow MyHC Genes in Fish Skeletal Muscle.- 6 Hedgehog Family of Signaling Molecules and Slow Myosin Expression in Skeletal Muscle Development.- 7 Innervation and Calcineurin Responsive Pathways and the Control of Slow MyHC Expression in Skeletal Muscle.- 8 Slow MyHC Expression in the Developing Heart.- 9 Summary.- References.- Molecular Characterization of Early Cardiac Development.- 1 Introduction.- 2 Molecular Control of Heart Field and Tubular Heart Formation.- 2.1 Conserved Regulatory Circuits Control Heart Field Formation in Insects and Vertebrates.- 2.1.1 Heart Field Formation in Vertebrates.- 2.1.2 Heart Formation in Insects.- 2.1.3 Nkx Homeobox Genes.- 2.1.4 GATA Genes.- 2.2 Hypoblast and Anterior Endoderm Are Involved in Myocardial Specification and Differentiation.- 2.3 Identification of Signalling Molecules Involved in Cardiac Specification and Differentiation.- 2.3.1 The Role of BMP2 in Heart Induction.- 2.4 Other Cardiogenic Signals.- 2.4.1 Wnt Signals Interfere with Heart Formation in Vertebrates.- 2.4.2 FGF Cooperates with BMP2.- 2.4.3 Cerberus.- 2.4.4 Cripto.- 2.5 Heart Tube Formation.- 3 Molecular Control of Cardiac Chamber Formation.- 3.1 Transcriptional Regulators of Chamber Formation.- 3.2 Cell-Cell Interaction in Chamber Formation.- 3.3 Popeye Genes — a Novel Family of Muscle-Restricted Genes.- References.