Rapid Manufacturing : The Technologies and Applications of Rapid Prototyping and Rapid Tooling (Edition.)

Rapid Manufacturing : The Technologies and Applications of Rapid Prototyping and Rapid Tooling (Edition.)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 214 p.
  • 言語 ENG
  • 商品コード 9781852333607
  • DDC分類 670.42

Full Description

Rapid prototyping is an exciting new technology used to create physical models and functional prototypes directly from CAD models. Rapid tooling concerns the production of tooling using parts manufactured by rapid prototyping. The book describes the characteristics and capabilities of the main known rapid prototyping processes. It covers in detail various commercially available processes such as: Stereolithography (SLA), Selective Laser Sintering (SLS), and others. The text places a strong emphasis on practical applications and contains an abundance of photographs and diagrams to illustrate clearly the principles of the machines and processes involved.

Contents

1 Introduction.- 1.1 Historical Perspectives.- 1.2 Rapid Prototyping - An Integral Part of Time Compression Engineering.- 1.2.1 Geometrical Modelling Techniques.- 1.2.1.1 Wireframe Modelling.- 1.2.1.2 Surface Modelling.- 1.2.1.3 Solid Modelling.- 1.2.2 RP Data Formats.- 1.3 RP Information Workflow.- 1.4 Summary.- References.- 2 Rapid Prototyping Processes.- 2.1 Classification of Rapid Prototyping Processes.- 2.2 Processes Involving a Liquid.- 2.2.1 Solidification of a Liquid Polymer.- 2.2.1.1 Stereolithography (SL).- 2.2.1.2 Liquid Thermal Polymerization (LTP).- 2.2.1.3 Beam Interference Solidification (BIS).- 2.2.1.4 Objet Quadra Process (Objet).- 2.2.1.5 Solid Ground Curing (SGC).- 2.2.1.6 Holographic Interference Solidification (HIS).- 2.2.2 Solidification of an Electroset Fluid: Electrosetting (ES).- 2.2.3 Solidification of Molten Material.- 2.2.3.1 Ballistic Particle Manufacture (BPM).- 2.2.3.2 Multi Jet Modelling (MJM).- 2.2.3.3 Fused Deposition Modelling (FDM).- 2.2.3.4 Three Dimensional Welding (3DW).- 2.2.3.5 Shape Deposition Manufacturing (SDM).- 2.3 Processes Involving Discrete Particles.- 2.3.1 Fusing of Particles by Laser.- 2.3.1.1 Selective Laser Sintering (SLS).- 2.3.1.2 Laser Engineering Net Shaping (LENSTM).- 2.3.1.3 Gas Phase Deposition (GPD).- 2.3.2 Joining of Particles with a Binder.- 2.3.2.1 Three-Dimensional Printing (3DP).- 2.3.2.2 Spatial Forming (SF).- 2.4 Processes Involving Solid Sheets.- 2.4.1 Laminated Object Manufacture (LOM).- 2.4.2 Paper Lamination Technology (PLT).- 2.4.3 Solid Foil Polymerisation (SFP).- 2.5 Summary.- References.- 3 Technical Characteristics and Technological Capabilities of Rapid Prototyping Systems.- 3.1 Stereolithography Apparatus (3D Systems).- 3.2 Solid Ground Curing Systems (Cubital Ltd).- 3.3 Fused Deposition Modelling Systems (Stratasys, Inc.).- 3.4 Selective Laser Sintering Systems (DTM Corp. and EOS GmbH).- 3.5 Laminated Object Manufacturing Systems (Helisys, Inc.).- 3.6 Paper Lamination Technology (Kira Corp).- 3.7 Laser Engineering Net Shaping (LENSTM) Systems (Optomec Design Co.).- 3.8 Summary.- References.- 4 Technical Characteristics and Technological Capabilities of Concept Modellers.- 4.1 3D Systems ThermoJet(TM) Printer.- 4.2 Sanders ModelMaker II (Inkjet Modelling Technology).- 4.3 Z-Corporation Z402 3D Printer (Three Dimensional Printing).- 4.4 Stratasys Genisys Xs 3D Printer.- 4.5 JP System 5.- 4.6 Objet Quadra System.- 4.7 Summary.- References.- 5 Applications of Rapid Prototyping Technology.- 5.1 Functional Models.- 5.2 Pattern for Investment and Vacuum Casting.- 5.3 Medical Models.- 5.4 Art Models.- 5.5 Engineering Analysis Models.- 5.6 Summary.- References.- 6 Indirect Methods for Rapid Tool Production.- 6.1 Role of Indirect Methods in Tool Production.- 6.2 Metal Deposition Tools.- 6.3 RTV Tools.- 6.4 Epoxy Tools.- 6.5 Ceramic Tools.- 6.6 Cast Metal Tools.- 6.7 Investment Casting.- 6.8 Fusible Metallic Core.- 6.9 Sand Casting.- 6.10 Keltool(TM) Process.- 6.11 Summary.- References.- 7 Direct Methods for Rapid Tool Production.- 7.1 Classification of Direct Rapid Tool Methods.- 7.2 Direct ACES(TM) Injection Moulds (AIM(TM)).- 7.3 Laminated Object Manufactured (LOM) Tools.- 7.4 DTM RapidTool(TM) Process.- 7.4.1 RapidSteel 1.0.- 7.4.2 RapidSteel 2.0.- 7.4.3 Copper Polyamide (PA).- 7.5 SandForm(TM).- 7.6 EOS DirectTool(TM) Process.- 7.7 Direct Metal Tooling using 3DP(TM).- 7.8 Topographic Shape Formation (TSF).- 7.9 Summary.- References.- 8 Applications of Rapid Tooling Technology.- 8.1 Insert Design.- 8.2 Insert Finishing.- 8.3 Rapid Tooling Inserts Wear Resistance.- 8.3.1 Wear Test Results.- 8.3.1.1 Non-coated RapidSteel 2.0 Insert.- 8.3.1.2 Non-coated EOSINT M Insert.- 8.3.1.3 Spray-coated Inserts.- 8.3.2 Discussion of the Wear Test Results.- 8.4 Case Studies.- 8.4.1 ABS Portable Electronic Tour Guide.- 8.4.2 Aluminium Windscreen Wiper Arm.- 8.5 Summary.- References.- 9 Rapid Prototyping Process Optimisation.- 9.1 Factors Influencing Accuracy.- 9.1.1 Data Preparation.- 9.1.1.1 Errors due to Tessellation.- 9.1.1.2 Errors due to Slicing.- 9.1.2 Part Building.- 9.1.2.1 Part Building Errors in the SL Process.- 9.1.2.2 Part Building Errors in the SLS Process.- 9.1.3 Part Finishing.- 9.2 Selection of Part Build Orientation.- 9.2.1 Orientation Constraints of the SL Process.- 9.2.2 Orientation Constraints of the SLS Process.- 9.3 Summary.- References.- Author Index.