Clinically Relevant Resistance in Cancer Chemotherapy (Cancer Treatment and Research)

個数:

Clinically Relevant Resistance in Cancer Chemotherapy (Cancer Treatment and Research)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 408 p.
  • 言語 ENG
  • 商品コード 9781402072000
  • DDC分類 616.994061

基本説明

Reviews clinically relevant aspects of the pharmacokinetics of commonly used anticancer agents as well as mechanisms of cellular / experimental resistance to such agents.

Full Description

Over the last several decades, the introduction of new chemotherapeutic drugs and drug combinations has resulted in increased long­ term remission rates in several important tumor types. These include childhood leukemia, adult leukemias and lymphomas, as well as testicular and trophoblastic tumors. The addition of high-dose chemotherapy with growth factor and hemopoietic stem cell support has increased clinical remission rates even further. For the majority of patients with some of the more common malignancies, however, palliation (rather than cure) is still the most realistic goal of chemotherapy for metastatic disease. The failure of chemotherapy to cure metastatic cancer is commonly referred to among clinicians as "drug resistance". This phenomenon can, however, often be viewed as the survival of malignant cells that resulted from a failure to deliver an effective drug dose to the (cellular) target because of anyone of or combination of a multitude of individual factors. Clinically, this treatment failure is often viewed as the rapid occurrence of resistance at the single cell level. However, in experimental systems, stable drug resistance is usually relatively slow to emerge.

Contents

List of contributors. Preface. 1. Tumor physiology and resistance to chemotherapy: repopulation and drug penetration; A.J. Davis, I.F. Tannock. 2. The role of membrane transporters in cellular resistance to anticancer nucleoside drugs; M.L. Clarke, et al. 3. MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents; L. Deng, et al. 4. The glutathione system in alkylator resistance; D. Hamilton, et al. 5. The role of signal transduction pathways in drug and radiation resistance; S. Grant, et al. 6. Mechanisms of repair of interstrand crosslinks in DNA; R.J. Legerski, C. Richie. 7. DNA repair in resistance to bifunctional alkylating and platinating agents; D. Murray. 8. Leukemic cell insensitivity to cyclophosphamide and other oxazaphosphorines mediated by aldehyde dehydrogenase(s); N.E. Sládek. 9. Mechanisms of resistance against cyclophosphamide and ifosfamide: can they be overcome without sacrificing selectivity? S.M. Ludeman, M.P. Gamcsik. 10. Cellular mechanisms of cyclophosphamide resistance: model studies in human medulloblastoma cell lines; H.S. Friedman, et al. 11. Model studies of cyclophosphamide resistance in human myeloid leukemia; B.S. Andersson, D. Murray. 12. Mechanisms of drug resistance in AML; M. Andreeff, M. Konopleva. 13. Biochemical and molecular mechanisms of cisplatin resistance; Z.H. Siddik. 14. Modification of radiosensitivity following chemotherapy exposure: potential implications for combined-modality therapy; R.A. Britten. 15. Clinical pharmacology of melphalan and itsimplications for clinical resistance to anticancer agents; R.B. Jones. 16. Pharmacological considerations of primary alkylators; J.S. McCune, J.T. Slattery. 17. Genomic approaches to clinical drug resistance; S. Damaraju, et al.Index.