Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses : Fundamental Mechanisms and Application to Ic Interconne

個数:

Chemical-Mechanical Polishing of Low Dielectric Constant Polymers and Organosilicate Glasses : Fundamental Mechanisms and Application to Ic Interconne

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 248 p.
  • 言語 ENG
  • 商品コード 9781402071935
  • DDC分類 621.38152

Full Description

As semiconductor manufacturers implement copper conductors in advanced interconnect schemes, research and development efforts shift toward the selection of an insulator that can take maximum advantage of the lower power and faster signal propagation allowed by copper interconnects. One of the main challenges to integrating a low-dielectric constant (low-kappa) insulator as a replacement for silicon dioxide is the behavior of such materials during the chemical-mechanical planarization (CMP) process used in Damascene patterning. Low-kappa dielectrics tend to be softer and less chemically reactive than silicon dioxide, providing significant challenges to successful removal and planarization of such materials.

The focus of this book is to merge the complex CMP models and mechanisms that have evolved in the past decade with recent experimental results with copper and low-kappa CMP to develop a comprehensive mechanism for low- and high-removal-rate processes. The result is a more in-depth look into the fundamental reaction kinetics that alter, selectively consume, and ultimately planarize a multi-material structure during Damascene patterning.

Contents

1: Overview of IC Interconnects.- 1.1 Silicon Ic Beol Technology Trends.- 1.2 Sia Roadmap Interconnect Projections.- 1.3 Low-? Requirements and Materials.- 1.4 Need for Low-? CMP Process Understanding.- 1.5 Summary.- 1.6 References.- 2: Low-? Interlevel Dielectrics.- 2.1 Fluorinated Glasses.- 2.2 Silsesquioxanes.- 2.3 Organosilicate Glasses.- 2.4 Polymers.- 2.5 Fluorinated Hydrocarbons.- 2.6 Nanoporous Silica Films.- 2.7 Other Porous Materials.- 2.8 References.- 3: Chemical-Mechanical Planarization (CMP).- 3.1 CMP Process Description.- 3.2 CMP Processes With Copper Metallization.- 3.3 CMP of Low-? Materials.- 3.4 CMP Process Models.- 3.5 Langmuir-Hinshelwood Surface Kinetics in CMP Modeling.- 3.6 References.- 4: CMP of BCB and SiLK Polymers.- 4.1 Removal Rate in Copper Slurries.- 4.2 Surface Roughness.- 4.3 Surface and Bulk Film Chemistry.- 4.4 Effect of Cure Conditions on BCB and Silk Removal.- 4.5 Effect of CMP and BCB and Silk Film Hardness.- 4.6 Comparison of BCB and Silk CMP with other Polymer CMP.- 4.7 Summary.- 4.8 References.- 5: CMP of Organosilicate Glasses.- 5.1 Effect of Film Carbon Content.- 5.2 Surface Roughness.- 5.3 Surface and Bulk Film Chemistry.- 5.4 Copper Damascene Patterning with OSG Dielectrics.- 5.5 Summary.- 5.6 References.- 6: Low-? CMP Model Based on Surface Kinetics.- 6.1 Isolation of the Chemical Effects in Silk CMP.- 6.2 CMP with Simplified "Model" Silk Slurries.- 6.3 Phenomenological Model for CMP Removal.- 6.4 Five Step Removal Model Using Modified Langmuir-Hinshelwood Kinetics for Silk CMP.- 6.5 Two Step Removal Model Using Heterogeneous Catalysis for Silk CMP.- 6.6 Extendibility of Model to Describe the CMP of Other Materials.- 6.7 References.- 7: Copper CMP Model Based Upon Fluid Mechanics and Surface Kinetics.- 7.1 FlowModel.- 7.2 Copper Removal Model.- 7.3 Model Results.- 7.4 Copper CMP Experiments with Potassium Dichromate Based Slurry.- 7.5 Summary.- 7.6 References.- 8: Future Directions in IC Interconnects and Related Low-? ILD Planarization Issues.- 8.1 Planarization of Interconnects with Ultra Low-? ILDS.- 8.2 Alternatives for the Post-Copper/Ultra Low-? Interconnect Era.- 8.3 3D Wafer-Scale Integration Using Dielectric Bonding Glues and Inter-Wafer Interconnection with Copper Damascene Patterning.- 8.4 Summary and Conclusions.- 8.5 References.- Appendices.- Appendix A: Experimental Procedures and Techniques.- Appendix B: XPS Depth-Profile Data.- Appendix C: CMP Data for Anomalous Silk Removal Behavior.