Structure and Dynamics of Confined Polymers

個数:

Structure and Dynamics of Confined Polymers

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 408 p.
  • 言語 ENG
  • 商品コード 9781402006982
  • DDC分類 547

Full Description

Polymers are essential to biology because they can have enough stable degrees of freedom to store the molecular code of heredity and to express the sequences needed to manufacture new molecules. Through these they perform or control virtually every function in life. Although some biopolymers are created and spend their entire career in the relatively large free space inside cells or organelles, many biopolymers must migrate through a narrow passageway to get to their targeted destination. This suggests the questions: How does confining a polymer affect its behavior and function? What does that tell us about the interactions between the monomers that comprise the polymer and the molecules that confine it? Can we design and build devices that mimic the functions of these nanoscale systems? The NATO Advanced Research Workshop brought together for four days in Bikal, Hungary over forty experts in experimental and theoretical biophysics, molecular biology, biophysical chemistry, and biochemistry interested in these questions. Their papers collected in this book provide insight on biological processes involving confinement and form a basis for new biotechnological applications using polymers. In his paper Edmund DiMarzio asks: What is so special about polymers? Why are polymers so prevalent in living things? The chemist says the reason is that a protein made of N amino acids can have any of 20 different kinds at each position along the chain, resulting in 20 N different polymers, and that the complexity of life lies in this variety.

Contents

Profound implications for biophysics of the polymer threading a membrane transition.- Phage DNA transport across membranes.- Translocation of macromolecules across membranes and through aqueous channels: Translocation across membranes.- Protein translocation across the outer membrane of mitochondria: Structure and function of the TOM complex of Neurospora crassa.- Protein translocation channels in mitochondria: TIM & TOM channels.- Sizing channels with neutral polymers.- Dynamic partitioning of neutral polymers into a single ion channel.- Branched polymers inside nanoscale pores.- Physics of DNA threading through a nanometer pore and applications to simultaneous multianalyte sensing.- Mechanism of ionic current blockades during polymer transport through pores of nanometer dimensions.- Using nanopores to discriminate between single molecules of DNA.- Use of a nanoscale pore to read short segments within single polynucleotide molecules.- Polymer dynamics in microporous media.- Entropic barrier theory of polymer translocation.- Polymer translocation through a "complicated" pore.- The polymer barrier crossing problem.- Brownian ratchets and their application to biological transport processes and macromolecular separation.- Composition and structural dynamics of vertebrate striated muscle thick filaments: Role of myosin-associated proteins.- Force-driven folding and unfolding transitions in single Titin molecules: Single polymer strand manipulation.- Dynamics of actin filaments in motility assays: A microscopic model and its numerical simulation.- Conformation-dependent sequence design of copolymers: Example of bio-evolution mimetics approach.- Single molecule nucleic acid analysis by fluorescence flow cytometry.- Fluorescence energy transfer reagents for DNA sequencingand analysis: High-throughput fluorescent DNA sequencing.