Energy Efficient Microprocessor Design

個数:

Energy Efficient Microprocessor Design

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9780792375869
  • DDC分類 621.3916

Full Description

This work began in 1995 as an outgrowth of the InfoPad project which showed us that in order to reduce the energy consumption of a portable multimedia terminal that something had to be done about the consumption of the microprocessor subsystem. The design of the InfoPad attempted to reduce the requirements of this general pur­ pose processor by moving the computation into the network or by the use of highly optimized integrated circuits, but in spite of these efforts it still was a major consumer of energy. The reasons for this became apparent as we determined that the energy required to perform a function in dedicated hardware could be several orders of magnitude lower than that consumed in the InfoPad microprocessor. We therefore set out on a full fledged attack on all aspects of the microprocessor energy consumption [1 J. After considerable analysis it became clear that though better circuit design and a stream­ lined architecture would assist in our goal of energy reduction, that the biggest gains were to be found by operating at reduced voltages. For the busses and VO this could be accomplished without significant degradation of the processor performance, but this was not a straightforward solution when applied to the core of the processor sub­ system (CPU and memory).

Contents

1 Introduction.- 1.1 The Need for Energy Efficiency.- 1.2 The Performance-Energy Trade-off.- 1.3 Book Organization.- 2 Energy Efficient Design.- 2.1 Processor Usage Model.- 2.2 CMOS Circuit Models.- 2.3 Energy Use Metrics.- 2.4 Energy Efficient Design Observations.- 2.5 Dynamic Voltage Scaling.- 3 Microprocessor System Architecture.- 3.1 System Architecture.- 3.2 Processor Core.- 3.3 Cache System.- 3.4 System Coprocessor.- 3.5 Summary.- 4 Circuit Design Methodology.- 4.1 General Energy-Efficient Circuit Design.- 4.2 Memory Design.- 4.3 Low-Swing Bus Transceivers.- 4.4 Design Constraints Over Voltage.- 4.5 Design Constraints for Varying Voltage.- 5 Energy Driven Design Flow.- 5.1 Overview.- 5.2 High-level Energy Estimation.- 5.3 Clocking Methodology.- 5.4 Power Distribution Methodology.- 5.5 Functional Verification.- 5.6 Timing Verification.- 6 Microprocessor and Memory IC's.- 6.1 Microprocessor IC.- 6.2 Processor Architecture.- 6.3 Memory IC.- 7 DC-DC Voltage Conversion.- 7.1 Introduction to Switching Regulators.- 7.2 PWM Operation.- 7.3 PFM Operation.- 7.4 Other Topologies.- 7.5 Dynamic Voltage Conversion.- 8 DC-DC Converter IC for DVS.- 8.1 System and Algorithm Description.- 8.2 External Component Selection.- 8.3 Frequency Detector.- 8.4 Current Comparators.- 8.5 Power FETs.- 8.6 Efficiency Simulations.- 8.7 Measured Results.- 9 DVS System Design and Results.- 9.1 System Architecture.- 9.2 Interface IC.- 9.3 Prototype Board.- 9.4 Software Infrastructure.- 9.5 Evaluation.- 9.6 Comparisons and other related work.- 10 Software and Operating System Support.- 10.1 Software Energy Reduction.- 10.2 Software Environment.- 10.3 System Architecture.- 10.4 Benchmarking.- 10.5 DVS Operating System.- 10.6 Voltage Scheduling Algorithms.- 10.7 Algorithm Analysis.- 10.8 Commentsand Possible Further Directions.- 11 Conclusions.- 11.1 Energy Efficient Design.- 11.2 Current Industry Directions.- 11.3 Future Directions.