最新電子半導体デバイス論<br>Theory of Modern Electronic Semiconductor Devices

個数:
  • ポイントキャンペーン

最新電子半導体デバイス論
Theory of Modern Electronic Semiconductor Devices

  • ウェブストア価格 ¥35,120(本体¥31,928)
  • Wiley-Interscience(2002/02発売)
  • 外貨定価 US$ 201.95
  • ゴールデンウィーク ポイント2倍キャンペーン対象商品(5/6まで)
  • ポイント 638pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 448 p.
  • 言語 ENG
  • 商品コード 9780471415411
  • DDC分類 621.38152

Full Description

A thorough examination of the present and future of semiconductor device technology
Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline's literature.
Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include:
* Heterostructure field effect transistors
* Bipolar and CMOS transistors
* Resonant tunneling diodes
* Real space transfer transistors
* Quantum dot cellular automata
* Single electron transistors
The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.

Contents

PREFACE.

1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS.

1.1 Moore's Law and Its Implications.

1.2 Semiconductor Devices for Telecommunications.

1.3 Digital Communications.

2 SEMICONDUCTOR HETEROSTRUCTURES.

2.1 Formation of Heterostructures.

2.2 Modulation Doping.

2.3 Two-Dimensional Subband Transport at Heterointerfaces.

2.4 Strain and Stress at Heterointerfaces.

2.5 Perpendicular Transport in Heterostructures and Superlattices.

2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties.

Problems.

3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS.

3.1 Motivation.

3.2 Basics of Heterostructure Field-Effect Transistors.

3.3 Simplified Long-Channel Model of a MODFET.

3.4 Physical Features of Advanced State-of-the-Art MODFETs.

3.5 High-Frequency Performance of MODFETs.

3.6 Materials Properties and Structure Optimization for HFETs.

Problems.

4 HETEROSTRUCTURE BIPOLAR TRANSISTORS.

4.1 Review of Bipolar Junction Transistors.

4.2 Emitter-Base Heterojunction Bipolar Transistors.

4.3 Base Transport Dynamics.

4.4 Nonstationary Transport Effects and Breakdown.

4.5 High-Frequency Performance of HBTs.

4.6 Materials Properties and Structure Optimization for HBTs .

Problems.

5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND DEVICES.

5.1 Introduction.

5.2 k-Space Transfer.

5.3 Real-Space Transfer.

5.4 Consequences of NDR in a Semiconductor.

5.5 Transferred Electron-Effect Oscillators: Gunn Diodes.

5.6 Negative Differential Resistance Transistors.

5.7 IMPATT Diodes.

Problems.

6 RESONANT TUNNELING AND DEVICES.

6.1 Physics of Resonant Tunneling: Qualitative Approach.

6.2 Physics of Resonant Tunneling: Envelope Approximation.

6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction.

6.4 Resonant Tunneling Diodes: High-Frequency Applications.

6.5 Resonant Tunneling Diodes: Digital Applications.

6.6 Resonant Tunneling Transistors.

Problems.

7 CMOS: DEVICES AND FUTURE CHALLENGES.

7.1 Why CMOS?

7.2 Basics of Long-Channel MOSFET Operation.

7.3 Short-Channel Effects.

7.4 Scaling Theory.

7.5 Processing Limitations to Continued Miniaturization.

Problems.

8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE.

8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe.

8.2 Quantum-Dot Devices and Cellular Automata.

8.3 Molecular Computing.

8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing.

8.5 Coulomb Blockade and Single-Electron Transistors.

8.6 Quantum Computing.

Problems.

9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS.

9.1 Landau Levels.

9.2 Classical Hall Effect.

9.3 Integer Quantum Hall Effect.

9.4 Fractional Quantum Hall Effect.

9.5 Shubnikov-de Haas Oscillations.

Problems.

REFERENCES.

APPENDIX A: PHYSICAL CONSTANTS.

APPENDIX B: BULK MATERIAL PARAMETERS.

Table I: Silicon.

Table II: Ge.

Table III: GaAs.

Table IV: InP.

Table V: InAs.

Table VI: InN.

Table VII: GaN.

Table VIII: SiC.

Table IX: ZnS.

Table X: ZnSe.

Table XI : Al x Ga 1 fx As.

Table XI I : Ga 0:47 In 0:53 As.

Table XIII: Al 0:48 In 0:52 As.

Table XI V: Ga 0:5 In 0:5 P.

Table XV: Hg 0:70 Cd 0:30 Te.

APPENDIX C: HETEROJUNCTION PROPERTIES.

INDEX.