Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (3rd Edition) (3RD)

個数:
  • ポイントキャンペーン

Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (3rd Edition) (3RD)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 1504 p.
  • 言語 ENG
  • 商品コード 9789812381071
  • DDC分類 530.143

基本説明

The first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations.

Full Description

This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on 'Critical Properties of Φ4 Theories' gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.

Contents

Fundamentals; Path Integrals - Elementary Properties and Simple Solutions; External Sources, Correlations, and Perturbation Theory; Semiclassical Time Evolution Amplitude; Variational Perturbation Theory; Path Integrals with Topological Constrainsts; Many Particle Orbits - Statistics and Second Quantization; Path Integrals in Spherical Coordinates; Fixed-Energy Amplitude and Wave Functions; Spaces with Curvature and Torsion; Schrodinger Equation in General Metric-Affine Spaces; New Path Integral Formula for Singular Potentials; Path Integral of Coulomb System; Solution of Further Path Integrals by the Duru-Kleinert Method; Path Integrals in Polymer Physics; Polymers and Particle Orbits in Multiply Connected Spaces; Tunneling; Nonequilibrium Quantum Statistics; Relativistic Particle Orbits; Path Integrals and Financial Markets.