出版社内容情報
化学・化学工学分野でPythonを使って機械学習を行うための入門書
本書は、化学・化学工学分野でPythonを使って機械学習を行うための入門書です。
これまでに蓄積してきた実験/製造データをデータ解析・機械学習を用いて分析することで、いままでとはまったく別のアプローチで材料開発を加速させたり、プロセス管理を効率化・安定化させたりすることができます。なぜなら、実験や製造データは、目に見えない、研究者・技術者の知識・知見・経験・勘の宝庫だからです。そして、データ解析・機械学習を用いることで、これらを目に見える形にすることができるからです。
読者が一から実践できるよう、Pythonのインストール方法、データ解析・機械学習の基本理論から、材料設計、分子設計、プロセス管理について実際にサンプルプログラムとサンプルデータセットを使った実践までを丁寧に解説しています。
内容説明
化学・化学工学分野でPythonを使って機械学習を行うための入門書。読者が一から実践できるよう、Pythonのインストール方法、データ解析・機械学習の基本理論から、材料設計、分子設計、プロセス管理について実際にサンプルプログラムとサンプルデータセットを使った実践までを丁寧に解説。今回の改訂では、Pythonコードの改訂のほか、少数の実験データを扱う場合に有効な手法、ならびに、少数のデータからでも嘘をつかずにデータ解析・機械学習ができるウェブサービス“Datachemical LAB”に関する説明を追加。
目次
第1部 Pythonと統計の基礎知識(Pythonの基礎;データの図示)
第2部 データ解析・機械学習の基礎(多変量データとデータの可視化;化学データを用いたモデリング;回帰モデル・クラス分類モデルの適用範囲)
第3部 化学・化学工学データでの実践のしかた(材料設計、分子設計、医薬品設計;時系列データの解析;Datachemical LABを用いた化学・化学工学のデータ解析・機械学習)
著者等紹介
金子弘昌[カネコヒロマサ]
明治大学理工学部応用化学科准教授。2009年東京大学大学院工学系研究科修士課程修了(化学システム工学専攻)。2020年より現職(本データはこの書籍が刊行された当時に掲載されていたものです)
※書籍に掲載されている著者及び編者、訳者、監修者、イラストレーターなどの紹介情報です。