Algebraic Geometry : Complex Projective Varieties (Classics in Mathematics) -- Paperback

個数:
  • ポイントキャンペーン

Algebraic Geometry : Complex Projective Varieties (Classics in Mathematics) -- Paperback

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783540586579

Full Description

Let me begin with a little history. In the 20th century, algebraic geometry has gone through at least 3 distinct phases. In the period 1900-1930, largely under the leadership of the 3 Italians, Castelnuovo, Enriques and Severi, the subject grew immensely. In particular, what the late 19th century had done for curves, this period did for surfaces: a deep and systematic theory of surfaces was created. Moreover, the links between the "synthetic" or purely "algebro-geometric" techniques for studying surfaces, and the topological and analytic techniques were thoroughly explored. However the very diversity of tools available and the richness of the intuitively appealing geometric picture that was built up, led this school into short-cutting the fine details of all proofs and ignoring at times the time­ consuming analysis of special cases (e. g. , possibly degenerate configurations in a construction). This is the traditional difficulty of geometry, from High School Euclidean geometry on up. In the period 1930-1960, under the leadership of Zariski, Weil, and (towards the end) Grothendieck, an immense program was launched to introduce systematically the tools of commutative algebra into algebraic geometry and to find a common language in which to talk, for instance, of projective varieties over characteristic p fields as well as over the complex numbers. In fact, the goal, which really goes back to Kronecker, was to create a "geometry" incorporating at least formally arithmetic as well as projective geo­ metry.

Contents

1. Affine Varieties.- §1A. Their Definition, Tangent Space, Dimension, Smooth and Singular Points.- §1B. Analytic Uniformization at Smooth Points, Examples of Topological Knottedness at Singular Points.- §1C. Ox,X a UFD when x Smooth; Divisor of Zeroes and Poles of Functions.- 2. Projective Varieties.- §2A. Their Definition, Extension of Concepts from Affine to Projective Case.- §2B. Products, Segre Embedding, Correspondences.- §2C. Elimination Theory, Noether's Normalization Lemma, Density of Zariski-Open Sets.- 3. Structure of Correspondences.- §3A. Local Properties—Smooth Maps, Fundamental Openness Principle, Zariski's Main Theorem.- §3B. Global Properties—Zariski's Connectedness Theorem, Specialization Principle.- §3C. Intersections on Smooth Varieties.- 4. Chow's Theorem.- §4A. Internally and Externally Defined Analytic Sets and their Local Descriptions as Branched Coverings of ?n.- §4B. Applications to Uniqueness of Algebraic Structure and Connectedness.- 5. Degree of a Projective Variety.- §5A. Definition of deg X, multxX, of the Blow up Bx(X), Effect of a Projection, Examples.- §5B. Bezout's Theorem.- §5C. Volume of a Projective Variety ; Review of Homology, DeRham's Theorem, Varieties as Minimal Submanifolds.- 6. Linear Systems.- §6A. The Correspondence between Linear Systems and Rational Maps, Examples; Complete Linear Systems are Finite-Dimensional.- §6B. Differential Forms, Canonical Divisors and Branch Loci.- §6C. Hilbert Polynomials, Relations with Degree.- Appendix to Chapter 6. The Weil-Samuel Algebraic Theory of Multiplicity.- 7. Curves and Their Genus.- §7A. Existence and Uniqueness of the Non-Singular Model of Each Function Field of Transcendence Degree 1 (after Albanese).- §7B. Arithmetic Genus = Topological Genus; Existence of Good Projections to ?1, ?2, ?3.- §7C. Residues of Differentials on Curves, the Classical Riemann-Roch Theorem for Curves and Applications.- §7D. Curves of Genus 1 as Plane Cubics and as Complex Tori ?/L.- 8. The BirationalGeometry of Surfaces.- §8A. Generalities on Blowing up Points.- §8B. Resolution of Singularities of Curves on a Smooth Surface by Blowing up the Surface; Examples.- §8C. Factorization of Birational Maps between Smooth Surfaces; the Trees of Infinitely Near Points.- §8D. The Birational Map between ?2 and the Quadric and Cubic Surfaces; the 27 Lines on a Cubic Surface.- List of Notations.