Laser Separation of Isotopes in Atomic Vapors (2006. 190 p. w. 118 figs. (8 col.).)

個数:

Laser Separation of Isotopes in Atomic Vapors (2006. 190 p. w. 118 figs. (8 col.).)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 190 p.
  • 商品コード 9783527406210

基本説明

The first book on this important technology allows an understanding of the physics of atomic vapor laser isotope separation and new photochemical methods of laser isotope separation.

Full Description

Written by leading Russian scientists, including Nobel laureate, A.M. Prokhorov (1916-2002), this first book on this important technology allows an understanding of the physics of atomic vapor laser isotope separation and new photochemical methods of laser isotope separation. One entire chapter is devoted to chemical reactions of atoms in excited states, while further chapters deal with the separation of isotopes by one photon isotope-selective and coherent isotope-selective two photon excitation of atoms. A final chapter looks at the prospects for the industrial production of isotope products by laser isotope separation. The whole is rounded off by six appendices.

Contents

1 Laser Isotope Separation in Atomic Vapors. 1.1 Introduction. 1.2 Brief Description of the AVLIS Process as Applied to Uranium. 1.3 General Description of the AVLIS Process. 1.4 Theoretical Description of the AVLIS Process. 1.4.1 Theoretical Description of the Method for Incoherent Interaction Between Radiation and Atoms. 1.4.2 Features of Coherent Two-Photon Excitation. 1.4.3 Evaporation of Separated Material, Collimation of an Atomic Beam, and Ion Extraction. 1.5 Photochemical Laser Isotope Separation in Atomic Vapors. 1.6 Other Methods of Isotope Separation. 2 Laser Technique for Isotope Separation. 2.1 Introduction. 2.2 General Requirements for a Laser System in the AVLIS Process. 2.3 Laser Complex. 2.3.1 Pumping Lasers. 2.3.2 Tunable Lasers. 2.4 Complexes for Laser Isotope Separation. 3 Chemical Reactions of Atoms in Excited States. 3.1 General View of Photochemical Reactions. 3.2 Experimental Study of Photochemical Reactions Between Atoms and Molecules. 3.3 Collisional Quenching of Excited Atomic States by Molecules. 3.4 Resonance Transfer of Excitation in Collisions. 3.5 Collisional Processes with Rydberg Atoms. 3.6 Isotope Exchange Reactions. 3.7 Radical Reactions in Collisions. 4 Isotope Separation by Single-Photon Isotope-Selective Excitation of Atom. 4.1 Description of the Method. 4.2 Mathematical Model of the Method. 4.3 Calculation Results on Isotope-Selective Excitation of Zinc Atoms. 4.3.1 Transversal Gas Circulation. 4.3.2 Longitudinal Gas Circulation. 4.4 Output Parameters Versus the Detuning of Radiation Frequency. 4.5 Influence of the Radiation Line Profile on Output Characteristics of the Separation Process. 4.6 Experiments on Laser Separation of Zn Isotopes by the Photochemical Method. 4.7 Experiments on Laser Separation of Rubidium Isotopes by the Photochemical Method. 5 Coherent Isotope-Selective Two-Photon Excitation of Atoms. 5.1 Brief Description of Two-Photon Excitation and the Mathematical Model. 5.2 Two-Photon Excitation of Led Atoms. 5.3 Two-Photon Excitation of Boron and Silica Atoms. 5.4 Photochemical Separation of Zinc Isotopes by Means of the Two-Photon Excitation. 5.4.1 Description of the Method. 5.4.2 Polarization of Radiation. 5.4.3 Mathematical Model of Cascade Superluminescence. 5.4.4 Calculation Results. 5.4.5 Experimental Results. 5.5 Zinc Isotope Separation by Evaporating Material from Chamber Walls. 5.5.1 Problem Statement. 5.5.2 Physical Analysis. 5.5.3 Calculation Results and Their Analysis. 5.5.4 Influence of Diffusion Processes on the Selectivity of Isotope Separation. 6 Prospects for Industrial Isotope Production by Methods of Laser Isotope Separation. 6.1 Microelectronics and Optoelectronics. 6.2 Nuclear Fuel Cycle. 6.3 Medicine and Biology. 7 Appendix A: Mathematical Description of the Processes Based on Kinetic Equations. 8 Appendix B: Operation Features of Copper-Vapor Laser Complexes. 8.1 Specificity of Creating the Complexes of Copper-Vapor Lasers. 8.1.1 Specificity of Measuring Laser Radiation Parameters in CVL Complexes. 9 Appendix C: Physical and Technical Problems of Increasing the Power of Copper-Vapor Lasers. 10 Appendix D: Neutron Transmutation Doping of Silica. 11 Appendix E: Employment of Boron Isotopes in Microelectronics. 12 Appendix F: Employment of Boron in Nuclear Fuel Cycle Equipment. References. Subject Index.