生物無機化学における概念とモデル<br>Concepts and Models in Bioinorganic Chemistry (2006. XXVI, 443 p. w. figs. 24 cm)

個数:

生物無機化学における概念とモデル
Concepts and Models in Bioinorganic Chemistry (2006. XXVI, 443 p. w. figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 400 p.
  • 商品コード 9783527313051

基本説明

Provides a brief background on relevant biological systems and describes their structural, functional and spectroscopic results, while also summarizing key developments and compounds within the respective model systems.

Full Description

Destined to set the standard, this book meets the need for a didactic textbook focusing on the role of model systems in bioinorganic chemistry. The first part features concepts in bioinorganic chemistry such as electron transfer, medicinal inorganic chemistry, bioorganometallics and metal DNA complexes, while the second part presents inorganic model chemistry on metallo-enzymes, organized by metal ion. Experts in the pertinent fields provide a didactically well-organized background on relevant biological systems, as well as on their structural, functional and spectroscopic properties. All chapters are similarly structured, each one beginning with a timeline featuring the most important historical facts on the subject, followed by a table of the most significant enzymes. The authors also summarize key developments and open questions within the respective model systems. This book is aimed at senior undergraduate and graduate students in chemistry, biochemistry, life science and related fields.

Contents

Foreword. Preface. List of Contributors. Abbreviations. 1 The Biodistribution of Metal Ions (Robert J. P. Williams). 1.1 Introduction. 1.2 Rates of Exchange. 1.3 The Limitations of Water as a Solvent. 1.4 Equilibrium: Values of Binding Constants. 1.5 Quantitative Metal Ion Equilibria: Donor Strength. 1.6 The Effect of Size and Charge of Metal Ions. 1.7 The Effect of Electron Affi nity. 1.8 Control over Ligand Concentration. 1.9 The Compartments of Organisms. 1.10 Transport. 1.11 The Irreversible Binding of Fe, Co, Ni, Mg, and Mo (W). 1.12 Vanadium, Molybdenum, and Tungsten. 1.13 Rates of Exchange. 1.14 Summary. 2 Medicinal Inorganic Chemistry (Katherine H. Thompson and Chris Orvig). 2.1 Introduction. 2.2 Key Developments. 2.3 Summary of Key Concepts. 2.4 Selected Current Research Directions. 2.5 Open Questions. 3 The Chemical Toxicology of Metals and Metalloids (Graham N. George). 3.1 Introduction. 3.2 Arsenic. 3.3 Mercury. 3.4 Chromium. 3.5 The Promise of New Techniques. 4 Theoretical Modeling of Redox Processes in Enzymes and Biomimetic Systems (Arianna Bassan, Tomasz Borowski, Marcus Lundberg, and Per E. M. Siegbahn). 4.1 Introduction. 4.2 Computational Model. 4.3 Nonheme Iron Active Sites That Perform Alkane Hydroxylation and Olefin Oxidation. 4.4 Keto Acid-Dependent Dioxygenases and Their Synthetic Analogues. 4.5 Copper Complexes in Enzymes and Synthetic Systems. 4.6 Manganese Complexes That Oxidize Water to Dioxygen. 4.7 Conclusions. 5 Charge Transport in Biological Molecules (Yitao Long and Heinz-Bernhard Kraatz). 5.1 Introduction. 5.2 Electron Transfer in Proteins. 5.3 Electron Transfer in Peptides. 5.4 Charge Transfer in DNA. 5.5 Summary and Open Questions. 6 Bioorganometallic Chemistry (Nils Metzler-Nolte and Kay Severin). 6.1 Introduction. 6.2 Organometallic Complexes in Nature. 6.3 Synthetic Organometallic Complexes with Bioligands. 6.4 Organometallic Pharmaceuticals. 6.5 Analytical Bioorganometallic Chemistry. 6.6 Bioorganometallic Catalysis. 6.7 Conclusions and Outlook. 7 The Bioinorganic Side of Nucleic Acid Chemistry: Interactions with Metal Ions (Bernhard Lippert and Jens Muller). 7.1 Introduction: Nucleic Acids and Metals. 7.2 Modeling Metal-Nucleic Acid Interactions. 7.3 Take-Home Message. 7.4 Open Questions and Perspectives. 8 Nuclease and Peptidase Models (Srecko I. Kirin, Roland Kramer, and Nils Metzler-Nolte). 8.1 Introduction. 8.2 Mechanistic Considerations. 8.3 Substrates for Model Studies. 8.4 Peptidase Models. 8.5 Nuclease Models. 8.6 Applications. 9 Metalloporphyrins, Metalloporphyrinoids, and Model Systems (Bernhard Krautler and Bernhard Jaun). 9.1 Introduction: Biological Background. 9.2 Model Systems and Model Compounds to Understand Biological Function. 9.3 Summary of Key Concepts. 9.4 Open Questions and the Direction of Future Research. 10 Model Complexes for Vanadium-Containing Enzymes (Dieter Rehder). 10.1 Biological Background and Motivation. 10.2 Model Compounds. 10.3 Summary of Key Concepts. 10.4 Open Questions and the Direction of Future Research. 11 Model Complexes for Molybdenum- and Tungsten-Containing Enzymes (John H. Enemark and J. Jon A. Cooney). 11.1 Biological Background and Motivation. 11.1.1 Introduction 238 11.2 Model Compounds. 11.3 Summary. 11.4 Open Questions. 12 Structural and Functional Models for Oxygen-Activating Nonheme Iron Enzymes (Timothy A. Jackson and Lawrence Que, Jr.). 12.1 Biological Background and Motivation. 12.2 Dinuclear Iron Centers. 12.3 Diiron Models. 12.4 Monoiron Active Sites with a 2-His-1-Carboxylate Facial Triad Motif. 12.5 Monoiron Models. 12.6 Summary of Key Concepts. 12.7 Open Questions and the Direction of Future Research. 13 Model Chemistry of the Iron-Sulfur Protein Active Sites (George A. Koutsantonis). 13.1 Introduction. 13.2 Basic Iron and Sulfur Chemistry. 13.3 Common Iron-Sulfur Geometries. 13.4 Required Protein and Peptide Coordination Environments. 13.5 Syntheses of Model Compounds. 13.6 Properties of Analogues and Their Relation to Protein-Bound Clusters. 13.7 Conclusions. 14 Model Complexes of Ni-Containing Enzymes (Todd C. Harrop and Pradip K. Mascharak). 14.1 Introduction. 14.2 Urease. 14.3 NiFe Hydrogenase. 14.4 Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase (CODH/ACS). 14.5 Conclusions. 15 Hydrogenases and Model Complexes (Robert H. Morris). 15.1 Introduction. 15.2 What are Hydrogenases? 15.3 Nickel-Iron (NiFe-Hase) and Nickel-Iron-Selenium (NiFeSe-Hase) Hydrogenases. 15.4 Iron-Iron Hydrogenases. 15.5 Similarities and Differences between NiFe-Hase and FeFe-Hase. 15.6 Synthetic Complexes that Model Hydrogenases. 15.7 Conclusions. 15.8 Open Questions and the Direction of Future Research. 16 Model Complexes for Copper-Containing Enzymes (Yunho Lee and Kenneth D. Karlin). 16.1 Introduction. 16.2 Biological Background: Copper Proteins and Motivation for Biomimetic Studies. 16.3 Model Compounds. 16.4 Summary of Key Concepts. 16.5 Open Questions and Directions for Future Research. 17 Model Complexes for Zinc-Containing Enzymes (Nicolai Burzlaff). 17.1 Introduction. 17.2 Mononuclear Zinc Enzymes and Models. 17.3 Dinuclear Zinc Enzymes and Models. 17.4 Conclusions. Subject Index.